Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Asymmetric and narrow infalling structures, often called streamers, have been observed in several Class 0/I protostars, which is not expected in the classical star formation picture. Their origin and impact on the disk formation remain observationally unclear. By combining data from the James Clerk Maxwell Telescope (JCMT) and Atacama Large Millimeter/submillimeter Array (ALMA), we investigate the physical properties of the streamers and parental dense core in the Class 0 protostar, IRAS 16544–1604. Three prominent streamers associated to the disk with lengths between 2800 and 5800 au are identified on the northern side of the protostar in the C18O emission. Their mass and mass infalling rates are estimated to be in the range of (1–4) × 10−3M⊙and (1–5) × 10−8M⊙yr−1, respectively. Infall signatures are also observed in the more diffuse extended protostellar envelope observed with the ALMA from the comparison to the infalling and rotating envelope model. The parental dense core detected by the JCMT observation has a mass of ∼0.5M⊙, a subsonic to transonic turbulence of = 0.8–1.1, and a mass-to-flux ratio of 2–6. Our results show that the streamers in IRAS 16544–1604 only possess 2% of the entire dense core mass and contribute less than 10% of the mass infalling rate of the protostellar envelope. Therefore, the streamers in IRAS 16544–1604 play a minor role in the mass accretion process onto the disk, in contrast to those streamers observed in other sources and those formed in numerical simulations of collapsing dense cores with similar turbulence and magnetic field strengths.more » « lessFree, publicly-accessible full text available May 21, 2026
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Class 0 protostar IRAS 04166+2706, obtained as part of the ALMA Large Program Early Planet Formation in Embedded Disks. These observations were made in the 1.3 mm dust continuum and molecular lines at angular resolutions of (∼8 au) and (∼25 au), respectively. The continuum emission shows a disklike structure with a radius of ∼22 au. Kinematical analysis of13CO (2–1), C18O (2–1), H2CO (30,3–20,2), CH3OH (42–31) emission demonstrates that these molecular lines trace the infalling-rotating envelope and possibly a Keplerian disk, enabling us to estimate the protostar mass to be 0.15M⊙ < M⋆ < 0.39M⊙. The dusty disk is found to exhibit a brightness asymmetry along its minor axis in the continuum emission, probably caused by a flared distribution of the dust and the high optical depth of the dust emission. In addition, the12CO (2–1) and SiO (5–4) emissions show knotty and wiggling motions in the jets. Our high-angular-resolution observations revealed the most recent mass ejection events, which have occurred within the last ∼25 yr.more » « lessFree, publicly-accessible full text available October 1, 2026
-
We present the results of the observations made within the ALMA Large Program called Early Planet Formation in Embedded disks of the Class 0 protostar GSS30 IRS3. Our observations included the 1.3 mm continuum with a resolution of 0″.05 (7.8 au) and several molecular species, including12CO,13CO, C18O, H2CO, and c-C3H2. The dust continuum analysis unveiled a disk-shaped structure with a major axis of ~200 au. We observed an asymmetry in the minor axis of the continuum emission suggesting that the emission is optically thick and the disk is flared. On the other hand, we identified two prominent bumps along the major axis located at distances of 26 and 50 au from the central protostar. The origin of the bumps remains uncertain and might be an embedded substructure within the disk or the temperature distribution and not the surface density because the continuum emission is optically thick. The12CO emission reveals a molecular outflow consisting of three distinct components: a collimated component, an intermediate-velocity component exhibiting an hourglass shape, and a wider angle low-velocity component. We associate these components with the coexistence of a jet and a disk wind. The C18O emission traces both a circumstellar disk in Keplerian rotation and the infall of the rotating envelope. We measured a stellar dynamical mass of 0.35 ±0.09 M⊙.more » « less
-
Abstract We present the first results from the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program toward Oph IRS43, a binary system of solar mass protostars. The 1.3 mm dust continuum observations resolve a compact disk, ∼6 au radius, around the northern component and show that the disk around the southern component is even smaller, ≲3 au. CO,13CO, and C18O maps reveal a large cavity in a low-mass envelope that shows kinematic signatures of rotation and infall extending out to ∼2000 au. An expanding CO bubble centered on the extrapolated location of the source ∼130 yr ago suggests a recent outburst. Despite the small size of the disks, the overall picture is of a remarkably large and dynamically active region.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Class I source Oph IRS 63 in the context of the Early Planet Formation in Embedded Disks large program. Our ALMA observations of Oph IRS 63 show a myriad of protostellar features, such as a shell-like bipolar outflow (in12CO), an extended rotating envelope structure (in13CO), a streamer connecting the envelope to the disk (in C18O), and several small-scale spiral structures seen toward the edge of the dust continuum (in SO). By analyzing the velocity pattern of13CO and C18O, we measure a protostellar mass ofM⋆= 0.5 ± 0.2M⊙and confirm the presence of a disk rotating at almost Keplerian velocity that extends up to ∼260 au. These calculations also show that the gaseous disk is about four times larger than the dust disk, which could indicate dust evolution and radial drift. Furthermore, we model the C18O streamer and SO spiral structures as features originating from an infalling rotating structure that continuously feeds the young protostellar disk. We compute an envelope-to-disk mass infall rate of ∼10−6M⊙yr−1and compare it to the disk-to-star mass accretion rate of ∼10−8M⊙yr−1, from which we infer that the protostellar disk is in a mass buildup phase. At the current mass infall rate, we speculate that soon the disk will become too massive to be gravitationally stable.more » « less
-
Abstract Constraining the physical and chemical structure of young embedded disks is crucial for understanding the earliest stages of planet formation. As part of the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program, we present high spatial resolution (∼0.″1 or ∼15 au) observations of the 1.3 mm continuum and 13 CO J = 2–1, C 18 O J = 2–1, and SO J N = 6 5 –5 4 molecular lines toward the disk around the Class I protostar L1489 IRS. The continuum emission shows a ring-like structure at 56 au from the central protostar and tenuous, optically thin emission extending beyond ∼300 au. The 13 CO emission traces the warm disk surface, while the C 18 O emission originates from near the disk midplane. The coincidence of the radial emission peak of C 18 O with the dust ring may indicate a gap-ring structure in the gaseous disk as well. The SO emission shows a highly complex distribution, including a compact, prominent component at ≲30 au, which is likely to originate from thermally sublimated SO molecules. The compact SO emission also shows a velocity gradient along a direction tilted slightly (∼15°) with respect to the major axis of the dust disk, which we interpret as an inner warped disk in addition to the warp around ∼200 au suggested by previous work. These warped structures may be formed by a planet or companion with an inclined orbit, or by a gradual change in the angular momentum axis during gas infall.more » « less
-
Abstract We present observations of the Class 0 protostar IRAS 16544–1604 in CB 68 from the “Early Planet Formation in Embedded Disks (eDisk)” ALMA Large program. The ALMA observations target continuum and lines at 1.3 mm with an angular resolution of ∼5 au. The continuum image reveals a dusty protostellar disk with a radius of ∼30 au seen close to edge-on and asymmetric structures along both the major and minor axes. While the asymmetry along the minor axis can be interpreted as the effect of the dust flaring, the asymmetry along the major axis comes from a real nonaxisymmetric structure. The C18O image cubes clearly show the gas in the disk that follows a Keplerian rotation pattern around a ∼0.14M⊙central protostar. Furthermore, there are ∼1500 au scale streamer-like features of gas connecting from northeast, north–northwest, and northwest to the disk, as well as the bending outflow as seen in the12CO (2–1) emission. At the apparent landing point of the NE streamer, there is SO (65–54) and SiO (5–4) emission detected. The spatial and velocity structure of the NE streamer can be interpreted as a free-falling gas with a conserved specific angular momentum, and the detection of the SO and SiO emission at the tip of the streamer implies the presence of accretion shocks. Our eDisk observations have unveiled that the Class 0 protostar in CB 68 has a Keplerian-rotating disk with a flaring and nonaxisymmetric structure associated with accretion streamers and outflows.more » « less
-
Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results.more » « less
-
Abstract We have observed the Class 0/I protostellar system Ced110 IRS4 at an angular resolution of 0.″05 (∼10 au) as part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks. The 1.3 mm dust continuum emission reveals that Ced110 IRS4 is a binary system with a projected separation of ∼250 au. The continuum emissions associated with the main source and its companion, named Ced110 IRS4A and IRS4B, respectively, exhibit disk-like shapes and likely arise from dust disks around the protostars. The continuum emission of Ced110 IRS4A has a radius of ∼110 au (∼0.″6) and shows bumps along its major axis with an asymmetry. The bumps can be interpreted as a shallow, ring-like structure at a radius of ∼40 au (∼0.″2) in the continuum emission, as demonstrated from two-dimensional intensity distribution models. A rotation curve analysis on the C18O and13COJ= 2–1 lines reveals the presence of a Keplerian disk within a radius of 120 au around Ced110 IRS4A, which supports the interpretation that the dust continuum emission arises from a disk. The ring-like structure in the dust continuum emission might indicate a possible annular substructure in the surface density of the embedded disk, although the possibility that it is an apparent structure due to the optically thick continuum emission cannot be ruled out.more » « less
-
Abstract While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12COJ= 2–1,13COJ= 2–1, C18OJ= 2–1,H2COJ= 30,3–20,2, and SOJ= 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4M⊙using C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly.more » « less
An official website of the United States government
